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For x ∈ [0, 1], let xi be the digits in its binary expansion, that is, x =
∞∑
k=1

xk

2k . Then, for

p ∈ [0, 1], define

Ep =

{
x ∈ [0, 1] : lim

n→∞

1

n

n∑
j=1

xj = p

}
.

If x is chosen from Lebesgue measure on [0, 1], then xk are i.i.d. Bernoulli(1/2) random
variables. Hence,

Leb(Ep) =

{
1 if p = 1

2
.

0 otherwise.

Thus Lebesgue measure does not distinguish between Ep for p 6= 1
2
. As we shall see,

Hausdorff dimension does! Below, we write q for 1− p.

Proposition 1. dimH(Ep) = H(p), where H(p) = −p log2 p− q log2 q.

Then key reason for the appearance of H(p) is the following.

Lemma 2. For p ≤ 1
2

and integer n ≥ 1, define

T pn = {(z1, . . . , zn) ∈ {0, 1}n : z1 + . . .+ zn = np}.

Spn = {(z1, . . . , zn) ∈ {0, 1}n : z1 + . . .+ zn ≤ np}.
Then, as n→∞,

(1) 1
n

log2 #Tn(p)→ H(p).
(2) 1

n
log2 #Sn(p)→ H(p).

Proof. To prove the first claim, note that #Tn =
(
n
np

)
and by Stirling’s approximation,(

n

np

)
=

n!

(np)!(nq)!
∼ nn+ 1

2 e−n
√

2π

(np)np+
1
2 e−np

√
2π(nq)nq+

1
2 e−nq

√
2π

=
1√

2πnpq
p−npq−nq

where the “∼” in the middle means that the ratio of the left and right hand sides converges
to 1 as n→∞. Therefore, taking logarithms and dividing by n, we get

log2 #Tn
n

=
−np log2 p− nq log2 q +O(log n)

n
→ H(p).
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Now the second claim follows by observing that #Tn =
np∑
k=0

(
n
k

)
and hence

#Tn ≤ #Sn ≤ np #Tn

where the first inequality holds because Tn ⊂ Sn and the second hold because
(
n
k

)
increases

in k as k increases from 0 up to n
2

(and we have assumed that np ≤ n
2
). �

Proof of Proposition 1. Upper bound For p < 1
2
, let Ẽp = {x : lim supn→∞

1
n

n∑
j=1

xj <

p} so that Ẽp = ∪N≥1Ẽp(N) where

Ẽp(N) =

{
x :

1

n

n∑
j=1

xj < p for all n ≥ N

}
.

Then we claim that dimH(Ep(N)) ≤ H(p). Once we show this, it follows that
dimH(Ẽp) = supN dimH(Ẽp(N)) ≤ H(p) and since for any p′ > p, Ep ⊂ Ẽp′ , we get
dimH(Ep) ≤ H(p′) for any p′ ≥ p. As p→ H(p) is continuous, letting p′ decrease to p we
get dimH(Ep) ≤ H(p) as required to show.

Now fix N ≥ 1, p ≤ 1
2
, and consider Ẽp(N). Take any δ > 0, and let n be such that

2−n ≤ δ < 2−n+1. Then for each z ∈ Spn, define the set Az = {x : xj = zj for j ≤ n}.
Then, each |Az| = 2−n ≤ δ, and further ∪z∈Sp

n
Az covers Ẽp(N) provided n ≥ N (and the

latter holds if δ is small enough).
Thus for small enough δ, we have Nδ(Ẽp(N)) ≤ #Spn, and therefore

dimH(Ẽp(N)) ≤ dimM(Ẽp(N)) ≤ lim
n→∞

log #Spn
n log 2

= H(p)

the last inequality because of Lemma 2.

Lower bound To get a lower bound we fix a large integer M and consider the set TM
defined in Lemma 2. Then, let Y1, Y2, . . . be i.i.d. TM -valued random variables with P [Y1 =
z] = 1

#TM
for each z ∈ TM . Write Yj = (zj,1, . . . , zj,M) and set

X =
∞∑
j=1

1

2(j−1)M

M∑
k=1

zj,k
2k

be the number with binary digits z1,1, . . . , z1,M , z2,1, . . . , z2,M , . . .. Let µ be the law of X .
It is easy to see that µ(Ep) = 1 (why?). Then, for α ≥ 0, we have

Eα(µ) = E[|X −X ′|−α]
where X,X ′ are i.i.d with distribution µ. Let X be made up from Yj = (zj,1, . . . , zj,M) and
X ′ be made up from Y ′j = (z′j,1, . . . , z

′
j,M). Define L = min{k : Yk 6= Y ′k}. Then (at

least) the first (L − 1)M digits of X and X ′ coincide, and hence, |X − X ′| ≤ 2−LM+M .
We shall get a lower bound for |X −X ′| of the same order as follows.
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Let y∗ =
M∑

j=Mq+1

1
2j and let y∗ =

Mp∑
j=1

1
2j . Then, it is easy to see that for any z ∈ TM , we

have

y∗ ≤
M∑
k=1

zk
2k
≤ y∗.

Returning to |X −X ′|, without loss of generality suppose that X > X ′. Write

X −X ′ =
∞∑
j=L

1

2(j−1)L

M∑
k=1

zj,k − z′j,k
2k

.

Note that the terms with j < L cancel. Since we assume that X > X ′, we have

zL,k − z′L,k
2k

≥ 1

2M
.

On the other hand, for j ≥ L+ 1, we have
M∑
k=1

zj,k
2k
≥ y∗ and

M∑
k=1

z′j,k
2k
≤ y∗

which implies that
M∑
k=1

zj,k − z′j,k
2k

≥ −(y∗ − y∗).

Putting everything together, we get

X −X ′ ≥ 1

2LM
− y∗ − y∗

2LM

∞∑
j=1

1

2jM
≥ 1

2LM
(1− (y∗ − y∗)) = C2−LM

where C = 1− (y∗ − y∗) > 0. Thus

E[|X −X ′|−α] ≤ C E[2αLM ].

Now, P(Y1 = Y ′1) = 1
#TM

, and hence P[L = `] =
1− 1

#TM

(#TM )`−1 . From this it is immediate that
E[2αLM ] is finite whenever α < 1

M
log2 #TM .

Thus, for any M , we see that dimE(Ep) ≥ 1
M

log2 #TM . Let M → ∞ and apply
Lemma 2 to conclude that dimH(Ep) ≥ dimE(Ep) ≥ H(p). �

Remark 3. (1) There is nothing special about base 2. For instance, if for any p1, p2, p3

with p1 + p2 + p3 = 1, we set

Ep0,p1,p2 =

{
x ∈ [0, 1] : lim

n→∞

1

n

n∑
j=1

δxj−k = pk for k = 0, 1, 2

}
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to be the set of all x ∈ [0, 1] whose base three expansion has a proportion p0 of
zeros, a proportion p1 of ones and a proportion p2 of twos, then the same proof
method shows that dimH(Ep0,p1,p2) = −

∑2
k=0 pk log3 pk.

(2) This is the simplest example of what is called ’mutifractal decomposition’. The in-
terval [0, 1] is divided into sets parameterized by p, and for different p, the resulting
sets have different Hausdorff dimensions.

(3) H(p) is what is called the entropy of the Bernulli(p) measure. More generally if µ
is a discrete measure with µ{xi} = pi with

∑
pi = 1 and xis are distinct, then the

entropy of µ is defined to be −
∑
pi log2 pi.
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