HAUSDORFF DIMENSION OF THE SET OF NUMBERS WITH A GIVEN FREQUENCY OF DIGITS

MANJUNATH KRISHNAPUR

For $x \in[0,1]$, let x_{i} be the digits in its binary expansion, that is, $x=\sum_{k=1}^{\infty} \frac{x_{k}}{2^{k}}$. Then, for $p \in[0,1]$, define

$$
E_{p}=\left\{x \in[0,1]: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} x_{j}=p\right\} .
$$

If x is chosen from Lebesgue measure on $[0,1]$, then x_{k} are i.i.d. Bernoulli($1 / 2$) random variables. Hence,

$$
\operatorname{Leb}\left(E_{p}\right)= \begin{cases}1 & \text { if } p=\frac{1}{2} \\ 0 & \text { otherwise }\end{cases}
$$

Thus Lebesgue measure does not distinguish between E_{p} for $p \neq \frac{1}{2}$. As we shall see, Hausdorff dimension does! Below, we write q for $1-p$.

Proposition 1. $\operatorname{dim}_{H}\left(E_{p}\right)=H(p)$, where $H(p)=-p \log _{2} p-q \log _{2} q$.
Then key reason for the appearance of $H(p)$ is the following.
Lemma 2. For $p \leq \frac{1}{2}$ and integer $n \geq 1$, define

$$
\begin{aligned}
T_{n}^{p} & =\left\{\left(z_{1}, \ldots, z_{n}\right) \in\{0,1\}^{n}: z_{1}+\ldots+z_{n}=n p\right\} . \\
S_{n}^{p} & =\left\{\left(z_{1}, \ldots, z_{n}\right) \in\{0,1\}^{n}: z_{1}+\ldots+z_{n} \leq n p\right\} .
\end{aligned}
$$

Then, as $n \rightarrow \infty$,
(1) $\frac{1}{n} \log _{2} \# T_{n}(p) \rightarrow H(p)$.
(2) $\frac{1}{n} \log _{2} \# S_{n}(p) \rightarrow H(p)$.

Proof. To prove the first claim, note that $\# T_{n}=\binom{n}{n p}$ and by Stirling's approximation,

$$
\binom{n}{n p}=\frac{n!}{(n p)!(n q)!} \sim \frac{n^{n+\frac{1}{2}} e^{-n} \sqrt{2 \pi}}{(n p)^{n p+\frac{1}{2}} e^{-n p} \sqrt{2 \pi}(n q)^{n q+\frac{1}{2}} e^{-n q} \sqrt{2 \pi}}=\frac{1}{\sqrt{2 \pi n p q}} p^{-n p} q^{-n q}
$$

where the " \sim " in the middle means that the ratio of the left and right hand sides converges to 1 as $n \rightarrow \infty$. Therefore, taking logarithms and dividing by n, we get

$$
\frac{\log _{2} \# T_{n}}{n}=\frac{-n p \log _{2} p-n q \log _{2} q+O(\log n)}{n} \rightarrow H(p)
$$

Now the second claim follows by observing that $\# T_{n}=\sum_{k=0}^{n p}\binom{n}{k}$ and hence

$$
\# T_{n} \leq \# S_{n} \leq n p \# T_{n}
$$

where the first inequality holds because $T_{n} \subset S_{n}$ and the second hold because $\binom{n}{k}$ increases in k as k increases from 0 up to $\frac{n}{2}$ (and we have assumed that $n p \leq \frac{n}{2}$).
Proof of Proposition 1. Upper bound For $p<\frac{1}{2}$, let $\tilde{E}_{p}=\left\{x: \limsup _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} x_{j}<\right.$ $p\}$ so that $\tilde{E}_{p}=\cup_{N \geq 1} \tilde{E}_{p}(N)$ where

$$
\tilde{E}_{p}(N)=\left\{x: \frac{1}{n} \sum_{j=1}^{n} x_{j}<p \text { for all } n \geq N\right\}
$$

Then we claim that $\operatorname{dim}_{H}\left(E_{p}(N)\right) \leq H(p)$. Once we show this, it follows that $\operatorname{dim}_{H}\left(\tilde{E}_{p}\right)=\sup _{N} \operatorname{dim}_{H}\left(\tilde{E}_{p}(N)\right) \leq H(p)$ and since for any $p^{\prime}>p, E_{p} \subset \tilde{E}_{p^{\prime}}$, we get $\operatorname{dim}_{H}\left(E_{p}\right) \leq H\left(p^{\prime}\right)$ for any $p^{\prime} \geq p$. As $p \rightarrow H(p)$ is continuous, letting p^{\prime} decrease to p we get $\operatorname{dim}_{H}\left(E_{p}\right) \leq H(p)$ as required to show.

Now fix $N \geq 1, p \leq \frac{1}{2}$, and consider $\tilde{E}_{p}(N)$. Take any $\delta>0$, and let n be such that $2^{-n} \leq \delta<2^{-n+1}$. Then for each $\mathbf{z} \in S_{n}^{p}$, define the set $A_{\mathbf{z}}=\left\{x: x_{j}=z_{j}\right.$ for $\left.j \leq n\right\}$. Then, each $\left|A_{\mathbf{z}}\right|=2^{-n} \leq \delta$, and further $\cup_{\mathbf{z} \in S_{n}^{p}} A_{z}$ covers $\tilde{E}_{p}(N)$ provided $n \geq N$ (and the latter holds if δ is small enough).

Thus for small enough δ, we have $N_{\delta}\left(\tilde{E}_{p}(N)\right) \leq \# S_{n}^{p}$, and therefore

$$
\operatorname{dim}_{H}\left(\tilde{E}_{p}(N)\right) \leq \underline{\operatorname{dim}}_{M}\left(\tilde{E}_{p}(N)\right) \leq \lim _{n \rightarrow \infty} \frac{\log \# S_{n}^{p}}{n \log 2}=H(p)
$$

the last inequality because of Lemma 2.
Lower bound To get a lower bound we fix a large integer M and consider the set T_{M} defined in Lemma 2. Then, let Y_{1}, Y_{2}, \ldots be i.i.d. T_{M}-valued random variables with $P\left[Y_{1}=\right.$ $\mathbf{z}]=\frac{1}{\# T_{M}}$ for each $\mathbf{z} \in T_{M}$. Write $Y_{j}=\left(z_{j, 1}, \ldots, z_{j, M}\right)$ and set

$$
X=\sum_{j=1}^{\infty} \frac{1}{2^{(j-1) M}} \sum_{k=1}^{M} \frac{z_{j, k}}{2^{k}}
$$

be the number with binary digits $z_{1,1}, \ldots, z_{1, M}, z_{2,1}, \ldots, z_{2, M}, \ldots$. Let μ be the law of X. It is easy to see that $\mu\left(E_{p}\right)=1$ (why?). Then, for $\alpha \geq 0$, we have

$$
\mathcal{E}_{\alpha}(\mu)=\mathbf{E}\left[\left|X-X^{\prime}\right|^{-\alpha}\right]
$$

where X, X^{\prime} are i.i.d with distribution μ. Let X be made up from $Y_{j}=\left(z_{j, 1}, \ldots, z_{j, M}\right)$ and X^{\prime} be made up from $Y_{j}^{\prime}=\left(z_{j, 1}^{\prime}, \ldots, z_{j, M}^{\prime}\right)$. Define $L=\min \left\{k: Y_{k} \neq Y_{k}^{\prime}\right\}$. Then (at least) the first $(L-1) M$ digits of X and X^{\prime} coincide, and hence, $\left|X-X^{\prime}\right| \leq 2^{-L M+M}$. We shall get a lower bound for $\left|X-X^{\prime}\right|$ of the same order as follows.

Let $y_{*}=\sum_{j=M q+1}^{M} \frac{1}{2^{j}}$ and let $y^{*}=\sum_{j=1}^{M p} \frac{1}{2^{j}}$. Then, it is easy to see that for any $\mathbf{z} \in T_{M}$, we have

$$
y_{*} \leq \sum_{k=1}^{M} \frac{z_{k}}{2^{k}} \leq y^{*}
$$

Returning to $\left|X-X^{\prime}\right|$, without loss of generality suppose that $X>X^{\prime}$. Write

$$
X-X^{\prime}=\sum_{j=L}^{\infty} \frac{1}{2^{(j-1) L}} \sum_{k=1}^{M} \frac{z_{j, k}-z_{j, k}^{\prime}}{2^{k}}
$$

Note that the terms with $j<L$ cancel. Since we assume that $X>X^{\prime}$, we have

$$
\frac{z_{L, k}-z_{L, k}^{\prime}}{2^{k}} \geq \frac{1}{2^{M}}
$$

On the other hand, for $j \geq L+1$, we have

$$
\sum_{k=1}^{M} \frac{z_{j, k}}{2^{k}} \geq y_{*} \text { and } \sum_{k=1}^{M} \frac{z_{j, k}^{\prime}}{2^{k}} \leq y^{*}
$$

which implies that

$$
\sum_{k=1}^{M} \frac{z_{j, k}-z_{j, k}^{\prime}}{2^{k}} \geq-\left(y^{*}-y_{*}\right)
$$

Putting everything together, we get

$$
X-X^{\prime} \geq \frac{1}{2^{L M}}-\frac{y^{*}-y_{*}}{2^{L M}} \sum_{j=1}^{\infty} \frac{1}{2^{j M}} \geq \frac{1}{2^{L M}}\left(1-\left(y^{*}-y_{*}\right)\right)=C 2^{-L M}
$$

where $C=1-\left(y^{*}-y_{*}\right)>0$. Thus

$$
\mathbf{E}\left[\left|X-X^{\prime}\right|^{-\alpha}\right] \leq C \mathbf{E}\left[2^{\alpha L M}\right]
$$

Now, $\mathbf{P}\left(Y_{1}=Y_{1}^{\prime}\right)=\frac{1}{\# T_{M}}$, and hence $\mathbf{P}[L=\ell]=\frac{1-\frac{1}{\# T_{M}}}{\left(\# T_{M}\right)^{\ell-1}}$. From this it is immediate that $\mathbf{E}\left[2^{\alpha L M}\right]$ is finite whenever $\alpha<\frac{1}{M} \log _{2} \# T_{M}$.

Thus, for any M, we see that $\operatorname{dim}_{\mathcal{E}}\left(E_{p}\right) \geq \frac{1}{M} \log _{2} \# T_{M}$. Let $M \rightarrow \infty$ and apply Lemma 2 to conclude that $\operatorname{dim}_{H}\left(E_{p}\right) \geq \operatorname{dim}_{\mathcal{E}}\left(E_{p}\right) \geq H(p)$.

Remark 3. (1) There is nothing special about base 2 . For instance, if for any p_{1}, p_{2}, p_{3} with $p_{1}+p_{2}+p_{3}=1$, we set

$$
E_{p_{0}, p_{1}, p_{2}}=\left\{x \in[0,1]: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \delta_{x_{j}-k}=p_{k} \text { for } k=0,1,2\right\}
$$

to be the set of all $x \in[0,1]$ whose base three expansion has a proportion p_{0} of zeros, a proportion p_{1} of ones and a proportion p_{2} of twos, then the same proof method shows that $\operatorname{dim}_{H}\left(E_{p_{0}, p_{1}, p_{2}}\right)=-\sum_{k=0}^{2} p_{k} \log _{3} p_{k}$.
(2) This is the simplest example of what is called 'mutifractal decomposition'. The interval $[0,1]$ is divided into sets parameterized by p, and for different p, the resulting sets have different Hausdorff dimensions.
(3) $H(p)$ is what is called the entropy of the $\operatorname{Bernulli}(p)$ measure. More generally if μ is a discrete measure with $\mu\left\{x_{i}\right\}=p_{i}$ with $\sum p_{i}=1$ and x_{i} s are distinct, then the entropy of μ is defined to be $-\sum p_{i} \log _{2} p_{i}$.

